dc.contributor.author | Gunduz, Bayram | |
dc.contributor.author | Kurban, Mustafa | |
dc.date.accessioned | 2019-11-24T21:00:30Z | |
dc.date.available | 2019-11-24T21:00:30Z | |
dc.date.issued | 2018 | |
dc.identifier.issn | 0924-2031 | |
dc.identifier.issn | 1873-3697 | |
dc.identifier.uri | https://dx.doi.org/10.1016/j.vibspec.2018.02.008 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12513/3418 | |
dc.description | WOS: 000434749100006 | en_US |
dc.description.abstract | The changes in the structural, electronic, vibrational and photonic properties of N,N'-Dioctyl-3,4,9,10-perylenedicarboximide (PTCDI-C8) one-dimensional nanostucture have been investigated using experimental and theoretical techniques. The semi-empirical relations have been proposed for the calculation of the refractive index (n)from its measured and calculated energy gap (E-g) data. FT-IR and FT-Raman spectra characteristics and structural, spectroscopic and electronic properties such as HOMO-LUMO energies, harmonic frequencies, Mullkien atomic charges, dipole moments, radial distribution functions (RDFs) and coordination number of binary interactions were recorded with the aid of density functional theory (DFT) based on optimized structure for gas phase and different solvent environments. Moreover, ultraviolet-visible (UV-vis) spectral analysis and energy gaps has been carried out using experimental techniques and time-dependent (TD) DFT calculations. The results herein obtained reveal that PTCDI-C8 material is suitable for sensitivity applications due to its appropriate optoelectronic paramaters. (C) 2018 Elsevier B.V. All rights reserved. | en_US |
dc.description.sponsorship | Ahi Evran University Scientific Research Projects Coordination UnitAhi Evran University [TBY.C1.17.001]; Management Unit of Scientific Research Projects of Mu Alparslan University (MUSBAP), Turkey [0001] | en_US |
dc.description.sponsorship | The numerical calculations reported in this paper were partially performed at TUBITAK ULAKBIM, High Performance and Grid Computing Centre (TRUBA resources). This work was supported by the Ahi Evran University Scientific Research Projects Coordination Unit. Project Number: TBY.C1.17.001 and the Management Unit of Scientific Research Projects of Mu Alparslan University (MUSBAP) under Project 0001, Turkey. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | ELSEVIER SCIENCE BV | en_US |
dc.relation.isversionof | 10.1016/j.vibspec.2018.02.008 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Optical techniques | en_US |
dc.subject | Structure analysis | en_US |
dc.subject | Photonic properties | en_US |
dc.subject | Electronic properties | en_US |
dc.subject | Density-functional theory | en_US |
dc.title | Photonic, spectroscopic properties and electronic structure of PTCDI-C8 organic nanostructure | en_US |
dc.type | article | en_US |
dc.relation.journal | VIBRATIONAL SPECTROSCOPY | en_US |
dc.contributor.department | Kırşehir Ahi Evran Üniversitesi, Teknik Bilimler Meslek Yüksekokulu, Elektrik ve Otomasyon Bölümü | en_US |
dc.identifier.volume | 96 | en_US |
dc.identifier.startpage | 46 | en_US |
dc.identifier.endpage | 51 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |