Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAydemir, Emrah
dc.contributor.authorYalçınkaya, Mehmet Ali
dc.contributor.authorBarua, Prabal Datta
dc.contributor.authorBaygın, Mehmet
dc.contributor.authorFaust, Oliver
dc.contributor.authorDoğan, Şengül
dc.contributor.authorChakraborty, Subrata
dc.contributor.authorTuncer, Türker
dc.contributor.authorAcharya, U. Rajendra
dc.date.accessioned2022-04-04T06:01:57Z
dc.date.available2022-04-04T06:01:57Z
dc.date.issued2022en_US
dc.identifier.citationAydemir, E., Yalcinkaya, M. A., Barua, P. D., Baygin, M., Faust, O., Dogan, S., ... & Acharya, U. R. (2022). Hybrid deep feature generation for appropriate face mask use detection. International Journal of Environmental Research and Public Health, 19(4), 1939.en_US
dc.identifier.urihttps://doi.org/10.3390/ijerph19041939
dc.identifier.uri1660-4601
dc.identifier.urihttps://hdl.handle.net/20.500.12513/4347
dc.description.abstractMask usage is one of the most important precautions to limit the spread of COVID-19. Therefore, hygiene rules enforce the correct use of face coverings. Automated mask usage classification might be used to improve compliance monitoring. This study deals with the problem of inappropriate mask use. To address that problem, 2075 face mask usage images were collected. The individual images were labeled as either mask, no masked, or improper mask. Based on these labels, the following three cases were created: Case 1: mask versus no mask versus improper mask, Case 2: mask versus no mask + improper mask, and Case 3: mask versus no mask. This data was used to train and test a hybrid deep feature-based masked face classification model. The presented method comprises of three primary stages: (i) pre-trained ResNet101 and DenseNet201 were used as feature generators; each of these generators extracted 1000 features from an image; (ii) the most discriminative features were selected using an improved RelieF selector; and (iii) the chosen features were used to train and test a support vector machine classifier. That resulting model attained 95.95%, 97.49%, and 100.0% classification accuracy rates on Case 1, Case 2, and Case 3, respectively. Having achieved these high accuracy values indicates that the proposed model is fit for a practical trial to detect appropriate face mask use in real time.en_US
dc.language.isoengen_US
dc.publisherMultidisciplinary Digital Publishing Instituteen_US
dc.relation.isversionof10.1111/1556-4029.15023en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectface mask detectionen_US
dc.subjectResNet101en_US
dc.subjectDenseNet201en_US
dc.subjecttransfer learningen_US
dc.subjecthybrid feature selectoren_US
dc.subjectsupport vector machineen_US
dc.titleHybrid Deep Feature Generation for Appropriate Face Mask Use Detectionen_US
dc.typearticleen_US
dc.relation.journalInternatıonal Journal Of Envıronmental Research And Publıc Healthen_US
dc.contributor.departmentMühendislik-Mimarlık Fakültesien_US
dc.contributor.authorIDMehmet Ali Yalçınkaya / 0000-0002-7320-5643en_US
dc.identifier.volume19en_US
dc.identifier.issue4en_US
dc.identifier.startpage1en_US
dc.identifier.endpage16en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster