Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAydemir, Emrah
dc.contributor.authorTuncer, Türker
dc.contributor.authorDogan, Şengül
dc.date.accessioned2022-09-15T07:38:37Z
dc.date.available2022-09-15T07:38:37Z
dc.date.issued2020en_US
dc.identifier.citationAydemir, E., Tuncer, T., & Dogan, S. (2020). A Tunable-Q wavelet transform and quadruple symmetric pattern based EEG signal classification method. Medical hypotheses, 134, 109519.en_US
dc.identifier.issn0306-9877
dc.identifier.issn1532-2777
dc.identifier.urihttps://doi.org/10.1016/j.mehy.2019.109519
dc.identifier.urihttps://hdl.handle.net/20.500.12513/4574
dc.description.abstractElectroencephalography (EEG) signals have been widely used to diagnose brain diseases for instance epilepsy, Parkinson's Disease (PD), Multiple Skleroz (MS), and many machine learning methods have been proposed to develop automated disease diagnosis methods using EEG signals. In this method, a multilevel machine learning method is presented to diagnose epilepsy disease. The proposed multilevel EEG classification method consists of pre-processing, feature extraction, feature concatenation, feature selection and classification phases. In order to create levels, Tunable-Q wavelet transform (TQWT) is chosen and 25 frequency coefficients sub-bands are calculated by using TQWT in the pre-processing. In the feature extraction phase, quadruple symmetric pattern (QSP) is chosen as feature extractor and extracts 256 features from the raw EEG signal and the extracted 25 sub-bands. In the feature selection phase, neighborhood component analysis (NCA) is used. The 128, 256, 512 and 1024 most significant features are selected in this phase. In the classification phase, k nearest neighbors (kNN) classifier is utilized as classifier. The proposed method is tested on seven cases using Bonn EEG dataset. The proposed method achieved 98.4% success rate for 5 classes case. Therefore, our proposed method can be used in bigger datasets for more validation.en_US
dc.language.isoengen_US
dc.publisherChurchill Livingstoneen_US
dc.relation.isversionof10.1016/j.mehy.2019.109519en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectElectroencephalography signals classificationen_US
dc.subjectTunable-Q wavelet transformen_US
dc.subjectQuadruple symmetric patternen_US
dc.subjectK-nearest neighborsen_US
dc.subjectMachine learningen_US
dc.titleA Tunable-Q wavelet transform and quadruple symmetric pattern based EEG signal classification methoden_US
dc.typearticleen_US
dc.relation.journalMedical Hypothesesen_US
dc.contributor.departmentMühendislik-Mimarlık Fakültesien_US
dc.identifier.volume134en_US
dc.identifier.startpage1en_US
dc.identifier.endpage10en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster