Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorBurçak, Kadir Can
dc.contributor.authorBaykan, Ömer Kaan
dc.contributor.authorUğuz, Harun
dc.date.accessioned2022-11-11T11:17:10Z
dc.date.available2022-11-11T11:17:10Z
dc.date.issued2021en_US
dc.identifier.citationBurçak, K. C., Baykan, Ö. K., & Uğuz, H. (2021). A new deep convolutional neural network model for classifying breast cancer histopathological images and the hyperparameter optimisation of the proposed model. The Journal of Supercomputing, 77(1), 973-989.en_US
dc.identifier.issn09208542
dc.identifier.urihttps://doi.org/10.1007/s11227-020-03321-y
dc.identifier.urihttps://hdl.handle.net/20.500.12513/4726
dc.description.abstractDeep learning algorithms have yielded remarkable results in medical diagnosis and image analysis, besides their contribution to improvements in a number of fields such as drug discovery, time-series modelling and optimisation methods. With regard to the analysis of histopathologic breast cancer images, the similarity of those images and the presence of healthy and tumourous tissues in different areas complicate the detection and classification of tumours on whole slide images. An accurate diagnosis in a short time is a need for full treatment in breast cancer. A successful classification on breast cancer histopathological images will overcome the burden on the pathologist and reduce the subjectivity of diagnosis. In this study, we propose a deep convolutional neural network model. The model uses various algorithms (i.e., stochastic gradient descent, Nesterov accelerated gradient, adaptive gradient, RMSprop, AdaDelta and Adam) to compute the initial weight of the network and update the model parameters for faster backpropagation learning. In order to train the model with less hardware in a short time, we used the parallel computing architecture with Cuda-enabled graphics processing unit. The results indicate that the deep convolutional neural network model is an effective classification model with a high performance up to 99.05% accuracy value. © 2020, Springer Science+Business Media, LLC, part of Springer Nature.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.isversionof10.1007/s11227-020-03321-yen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBreast canceren_US
dc.subjectConvolutional neural networken_US
dc.subjectDeep learningen_US
dc.subjectHistopathologyen_US
dc.subjectImage classificationen_US
dc.titleA new deep convolutional neural network model for classifying breast cancer histopathological images and the hyperparameter optimisation of the proposed modelen_US
dc.typearticleen_US
dc.relation.journalJournal of Supercomputingen_US
dc.contributor.departmentKaman Meslek Yüksekokuluen_US
dc.contributor.authorIDKadir Can Burçak / 0000-0002-1488-6450en_US
dc.identifier.volume77en_US
dc.identifier.issue1en_US
dc.identifier.startpage973en_US
dc.identifier.endpage989en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster