Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKurban, Hasan
dc.contributor.authorKurban, Mustafa
dc.contributor.authorDalkılıç, Mehmet M.
dc.date.accessioned2023-04-05T13:03:55Z
dc.date.available2023-04-05T13:03:55Z
dc.date.issued2022en_US
dc.identifier.citationKurban, H., Kurban, M., & Dalkilic, M. M. (2022). Rapidly predicting Kohn–Sham total energy using data-centric AI. Scientific Reports, 12(1), 14403.en_US
dc.identifier.issn20452322
dc.identifier.urihttps://doi.org/10.1038/s41598-022-18366-7
dc.identifier.urihttps://hdl.handle.net/20.500.12513/5016
dc.description.abstractPredicting material properties by solving the Kohn-Sham (KS) equation, which is the basis of modern computational approaches to electronic structures, has provided significant improvements in materials sciences. Despite its contributions, both DFT and DFTB calculations are limited by the number of electrons and atoms that translate into increasingly longer run-times. In this work we introduce a novel, data-centric machine learning framework that is used to rapidly and accurately predicate the KS total energy of anatase TiO 2 nanoparticles (NPs) at different temperatures using only a small amount of theoretical data. The proposed framework that we call co-modeling eliminates the need for experimental data and is general enough to be used over any NPs to determine electronic structure and, consequently, more efficiently study physical and chemical properties. We include a web service to demonstrate the effectiveness of our approach. © 2022, The Author(s).en_US
dc.language.isoengen_US
dc.publisherNature Researchen_US
dc.relation.isversionof10.1038/s41598-022-18366-7en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleRapidly predicting Kohn–Sham total energy using data-centric AIen_US
dc.typearticleen_US
dc.relation.journalScientific Reportsen_US
dc.contributor.departmentMühendislik-Mimarlık Fakültesien_US
dc.contributor.authorIDMustafa Kurban / 0000-0002-7263-0234en_US
dc.identifier.volume12en_US
dc.identifier.issue1en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster