Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorNoori Al-Tekreeti, Mustafa Manal
dc.contributor.authorYağıcı, Mustafa
dc.date.accessioned2023-04-18T06:51:30Z
dc.date.available2023-04-18T06:51:30Z
dc.date.issued2022en_US
dc.identifier.citationAl-Tekreeti, M. M. N., & Agici, M. Y. (2022, October). Classification And Prediction Retinal Oct Images by CNN Algorithm. In 2022 International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT) (pp. 424-428). IEEE.en_US
dc.identifier.isbn978-166547013-1
dc.identifier.urihttps://doi.org/10.1109/ISMSIT56059.2022.9932698
dc.identifier.urihttps://hdl.handle.net/20.500.12513/5043
dc.description.abstractWHO says diabetic retinopathy is a leading cause of blindness. Complexity and quietness make early detection challenging. DR treatment is stage-dependent. Treatment slows disease progression. Ophthalmologists may initially just monitor DR. Diet, blood sugar, and exercise advice must be followed by DR patients. Slows disease progression. Injected medication can reduce DR damage. Advanced RD causes macula bleeding and swelling. Resulting macular edema. Photocoagulation stops retinal leakage. Lasers plug blood leaks by burning abnormal arteries. In the past decade, characterization has improved. We'll use MATLAB's CNN to detect diabetic retinopathy early. CNN is a well-known social model. Input, neurons, stored layers, and output make up CNN's master structure. Both solid and diabetic retinopathy fundus images are well-lit to reveal all hidden details. Mean, standard deviation, variance, skewness, and kurtosis. Bookkeeping is done after extraction. One secret layer, 16 information neurons, and 2 solid or not results make up a convolutional brain network. 70% is used for teaching, 15% for testing. Execution time varied on emphasis or age and location accuracy was 98.93 %. 98.24% exactness, 98.93% accuracy, 99.42% review, and 98.91 % AUC were reported for diabetic retinopathy identification and characterization. © 2022 IEEE.en_US
dc.language.isoengen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.isversionof10.1109/ISMSIT56059.2022.9932698en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial intelligenceen_US
dc.subjectclassificationen_US
dc.subjectdeep learningen_US
dc.subjectdiabetic retinopathyen_US
dc.subjecteyeen_US
dc.subjectimage processingen_US
dc.subjectOCTen_US
dc.titleClassification and Prediction Retinal Oct Images by CNN Algorithmen_US
dc.typeconferenceObjecten_US
dc.relation.journalISMSIT 2022 - 6th International Symposium on Multidisciplinary Studies and Innovative Technologies, Proceedingsen_US
dc.contributor.departmentMühendislik-Mimarlık Fakültesien_US
dc.contributor.authorIDMustafa Yağıcı / 0000-0003-2911-3909en_US
dc.identifier.startpage424en_US
dc.identifier.endpage428en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster