Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKurban, Hasan
dc.contributor.authorKurban, Mustafa
dc.date.accessioned2023-10-16T13:15:36Z
dc.date.available2023-10-16T13:15:36Z
dc.date.issued2021en_US
dc.identifier.citationKurban, H., & Kurban, M. (2021). Building Machine Learning systems for multi-atoms structures: CH3NH3PbI3 perovskite nanoparticles. Computational Materials Science, 195, 110490.en_US
dc.identifier.issn0927-0256
dc.identifier.issn1879-0801
dc.identifier.urihttps://doi.org/10.1016/j.commatsci.2021.110490
dc.identifier.urihttps://hdl.handle.net/20.500.12513/5303
dc.description.abstractIn this study, we built a variety of Machine Learning (ML) systems over 23 different sizes of CH3NH3PbI3 perovskite nanoparticles (NPs) to predict the atoms in the NPs from their geometric locations. Our findings show that a specific type of ML algorithms, tree-based models which are Random Forest (RF), Extreme Gradient Boosting (XGBoost), Decision Trees (DT), can perfectly learn CH3NH3PbI3 perovskite NPs. Surprisingly, some popular ML algorithms such as Naive Bayes (NB), Support Vector Machines (SVM), Partial Least Squares (PLS), Regularized Logistic Regression (LR), Neural Networks (NN), Stacked Auto-Encoder Deep Neural Network (DNN), K-Nearest Neighbor (KNN) fail to learn CH3NH3PbI3 perovskite NPs.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.isversionof10.1016/j.commatsci.2021.110490en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMaterial scienceen_US
dc.subjectCH3NH3PbI3en_US
dc.subjectMachine Learningen_US
dc.subjectRandom Foresten_US
dc.subjectXGBoosten_US
dc.subjectExtreme Gradient Boostingen_US
dc.titleBuilding Machine Learning systems for multi-atoms structures: CH3NH3PbI3 perovskite nanoparticlesen_US
dc.typearticleen_US
dc.relation.journalComputatıonal Materıals Scıenceen_US
dc.contributor.departmentMühendislik-Mimarlık Fakültesien_US
dc.contributor.authorIDMustafa Kurban / 0000-0002-7263-0234en_US
dc.identifier.volume195en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster