Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorUmar, Muhammad
dc.contributor.authorSabir, Zulqurnain
dc.contributor.authorRaja, Muhammad Asif Zahoor
dc.contributor.authorBaskonus, Haci Mehmet
dc.contributor.authorYao, Shao-Wen
dc.contributor.authorİlhan, Esin
dc.date.accessioned2025-01-23T12:57:19Z
dc.date.available2025-01-23T12:57:19Z
dc.date.issued2021en_US
dc.identifier.citationUmar, M., Sabir, Z., Raja, M. A. Z., Baskonus, H. M., Yao, S. W., & Ilhan, E. (2021). A novel study of Morlet neural networks to solve the nonlinear HIV infection system of latently infected cells. Results in Physics, 25, 104235.en_US
dc.identifier.issn22113797
dc.identifier.urihttps://10.1016/j.rinp.2021.104235
dc.identifier.urihttps://hdl.handle.net/20.500.12513/7059
dc.description.abstractThe aim of this study is to provide the numerical outcomes of a nonlinear HIV infection system of latently infected CD4+ T cells exists in bioinformatics using Morlet wavelet (MW) artificial neural networks (ANNs) optimized initially with global search of genetic algorithms (GAs) hybridized for speedy local search of sequential quadratic programming (SQP), i.e., MW-ANN-GA-SQP. The design of an error function is presented by designing the MW-ANN models for the differential equations along with the initial conditions that represent the HIV infection system involving latently infected CD4+ T cells. The precision and persistence of the presented approach MW-ANN-GA-SQP are recognized through comparative studies from the results of the Runge-Kutta numerical scheme for solving the HIV infection spread system in case of single and multiple trails of the MW-ANN-GA-SQP. Statistical estimates with ‘Theil's inequality coefficient’ and ‘root mean square error’ based indices further validate the sustainability and applicability of proposed MW-ANN-GA-SQP solver. © 2021 The Authorsen_US
dc.language.isoengen_US
dc.publisherElsevier B.V.en_US
dc.relation.isversionof10.1016/j.rinp.2021.104235en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBioinformaticsen_US
dc.subjectGenetic Algorithmsen_US
dc.subjectHIV Infection Modelsen_US
dc.subjectMorlet Waveletsen_US
dc.subjectNeural Networksen_US
dc.subjectSequential Quadratic Programmingen_US
dc.titleA Novel Study of Morlet Neural Networks to Solve the Nonlinear HIV İnfection System of Latently İnfected Cellsen_US
dc.typearticleen_US
dc.relation.journalResults in Physicsen_US
dc.contributor.departmentMühendislik-Mimarlık Fakültesien_US
dc.contributor.authorIDEsin İlhan / 0000-0002-0839-0942en_US
dc.identifier.volume25en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster