Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKurban, Hasan
dc.contributor.authorKurban, Mustafa
dc.date.accessioned2025-01-24T11:40:18Z
dc.date.available2025-01-24T11:40:18Z
dc.date.issued2021en_US
dc.identifier.citationKurban, H., & Kurban, M. (2021). Rare-class learning over Mg-doped ZnO nanoparticles. Chemical Physics, 546, 111159.en_US
dc.identifier.issn03010104
dc.identifier.urihttps://10.1016/j.chemphys.2021.111159
dc.identifier.urihttps://hdl.handle.net/20.500.12513/7064
dc.description.abstractThis interdisciplinary study is conducted to find answers to two important questions which researchers often face in Machine Learning (ML) and Material Science (MS) fields. In this work, we measure the performance of the most popular ML algorithms (more than a dozen) on rare-class learning problem and determine the best learning algorithm for atom type prediction over the Mg-doped ZnO nanoparticles data obtained from the density-functional tight-binding method. As a result, we observe that tree-based ML algorithms such as Extreme Gradient Boosting (XGB), Decision Trees (DT), Random Forest (RF), outperform other types of ML algorithms, e.g., cost-sensitive learning, prototype models, support vector machines, kernel methods, on both rare-class learning and atom type prediction. © 2021 Elsevier B.V.en_US
dc.language.isoengen_US
dc.publisherElsevier B.V.en_US
dc.relation.isversionof10.1016/j.chemphys.2021.111159en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectExtreme Gradient Boostingen_US
dc.subjectMachine Learningen_US
dc.subjectMaterial Scienceen_US
dc.subjectRare-class Learningen_US
dc.subjectTree-based Modelsen_US
dc.titleRare-Class Learning Over Mg-Doped Zno Nanoparticlesen_US
dc.typearticleen_US
dc.relation.journalChemical Physicsen_US
dc.contributor.departmentMühendislik-Mimarlık Fakültesien_US
dc.contributor.authorIDMustafa Kurban / 0000-0002-7263-0234en_US
dc.identifier.volume546en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster