Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKaraboğa, Hasan Aykut
dc.contributor.authorGünel, Aslıhan
dc.contributor.authorKorkut, Senay Vural
dc.contributor.authorDemir, İbrahim
dc.contributor.authorÇelik, Reşit
dc.date.accessioned2025-03-03T07:36:22Z
dc.date.available2025-03-03T07:36:22Z
dc.date.issued2021en_US
dc.identifier.citationKaraboga, H. A., Gunel, A., Korkut, S. V., Demir, I., & Celik, R. (2021). Bayesian network as a decision tool for predicting ALS disease. Brain Sciences, 11(2), 150.en_US
dc.identifier.issn20763425
dc.identifier.urihttps://10.3390/brainsci11020150
dc.identifier.urihttps://hdl.handle.net/20.500.12513/7140
dc.description.abstractClinical diagnosis of amyotrophic lateral sclerosis (ALS) is difficult in the early period. But blood tests are less time consuming and low cost methods compared to other methods for the diagnosis. The ALS researchers have been used machine learning methods to predict the genetic architecture of disease. In this study we take advantages of Bayesian networks and machine learning methods to predict the ALS patients with blood plasma protein level and independent personal features. According to the comparison results, Bayesian Networks produced best results with accuracy (0.887), area under the curve (AUC) (0.970) and other comparison metrics. We confirmed that sex and age are effective variables on the ALS. In addition, we found that the probability of onset involvement in the ALS patients is very high. Also, a person’s other chronic or neurological diseases are associated with the ALS disease. Finally, we confirmed that the Parkin level may also have an effect on the ALS disease. While this protein is at very low levels in Parkinson’s patients, it is higher in the ALS patients than all control groups. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.en_US
dc.language.isoengen_US
dc.publisherMDPI AGen_US
dc.relation.isversionof10.3390/brainsci11020150en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAmyotrophic Lateral Sclerosisen_US
dc.subjectBayesian Networksen_US
dc.subjectMachine Learningen_US
dc.subjectMotor Neuron Diseaseen_US
dc.subjectParkinson’s Diseaseen_US
dc.subjectPredictive Modelen_US
dc.titleBayesian Network as A Decision Tool for Predicting Als Diseaseen_US
dc.typearticleen_US
dc.relation.journalBrain Sciencesen_US
dc.contributor.departmentFen Edebiyat Fakültesien_US
dc.contributor.authorIDAslıhan Günel / 0000-0001-5301-2628en_US
dc.identifier.volume11en_US
dc.identifier.issue2en_US
dc.identifier.startpage1en_US
dc.identifier.endpage16en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster