Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorYan, Li
dc.contributor.authorSabır, Zulqurnain
dc.contributor.authorİlhan, Esin
dc.contributor.authorRaja, Muhammad Asif Zahoor
dc.contributor.authorGao, Wei
dc.contributor.authorBaskonuş, Hacı Mehmet
dc.date.accessioned2025-04-22T08:54:49Z
dc.date.available2025-04-22T08:54:49Z
dc.date.issued2023en_US
dc.identifier.citationYan, L., Sabir, Z., Ilhan, E., Raja, Z., Asif, M., Gao, W., & Baskonus, H. M. (2023). Design of a Computational Heuristic to Solve the Nonlinear Liénard Differential Model. CMES-Computer Modeling in Engineering & Sciences, 136(1).en_US
dc.identifier.issn1526-1492
dc.identifier.issn1526-1506
dc.identifier.urihttps://10.32604/cmes.2023.025094
dc.identifier.urihttps://hdl.handle.net/20.500.12513/7265
dc.description.abstractIn this study, the design of a computational heuristic based on the nonlinear Lienard model is presented using the efficiency of artificial neural networks (ANNs) along with the hybridization procedures of global and local search approaches. The global search genetic algorithm (GA) and local search sequential quadratic programming scheme (SQPS) are implemented to solve the nonlinear Lienard model. An objective function using the differential model and boundary conditions is designed and optimized by the hybrid computing strength of the GA-SQPS. The motivation of the ANN procedures along with GA-SQPS comes to present reliable, feasible and precise frameworks to tackle stiff and highly nonlinear differential models. The designed procedures of ANNs along with GA-SQPS are applied for three highly nonlinear differential models. The achieved numerical outcomes on multiple trials using the designed procedures are compared to authenticate the correctness, viability and efficacy. Moreover, statistical performances based on different measures are also provided to check the reliability of the ANN along with GA-SQPS.en_US
dc.language.isoengen_US
dc.publisherTech Scıence Pressen_US
dc.relation.isversionof10.32604/cmes.2023.025094en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectNonlinear Li?nard Modelen_US
dc.subjectNumerical Computingen_US
dc.subjectSequential Quadratic Programming Schemeen_US
dc.subjectGenetic Algorithmsen_US
dc.subjectStatistical Analysisen_US
dc.subjectArtificial Neural Networksen_US
dc.titleDesign of a Computational Heuristic to Solve the Nonlinear Li?nard Differential Modelen_US
dc.typearticleen_US
dc.relation.journalCmes-Computer Modelıng In Engıneerıng & Scıencesen_US
dc.contributor.departmentMühendislik-Mimarlık Fakültesien_US
dc.contributor.authorIDEsin İlhan / 0000-0002-0839-0942en_US
dc.identifier.volume136en_US
dc.identifier.issue1en_US
dc.identifier.startpage201en_US
dc.identifier.endpage221en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster