Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKöse, Handan
dc.contributor.authorUngor, Burcu
dc.contributor.authorHarmancı, Abdullah
dc.date.accessioned12.07.201910:49:13
dc.date.accessioned2019-07-11T21:57:32Z
dc.date.available12.07.201910:49:13
dc.date.available2019-07-11T21:57:32Z
dc.date.issued2016
dc.identifier.issn1303-5991
dc.identifier.urihttps://app.trdizin.gov.tr/makale/TWpBNU5qa3dNQT09
dc.identifier.urihttps://hdl.handle.net/20.500.12513/917
dc.description.abstractIn this paper, we deal with a new approach to re*exive propertyfor rings by using nilpotent elements, in this direction we introduce nil-re*exiverings. It is shown that the notion of nil-re*exivity is a generalization of thatof nil-semicommutativity. Examples are given to show that nil-re*exive ringsneed not be re*exive and vice versa, and nil-re*exive rings but not semicommutative are presented. We also proved that every ring with identity is weaklyre*exive de...ned by Zhao, Zhu and Gu. Moreover, we investigate basic properties of nil-re*exive rings and provide some source of examples for this classof rings. We consider some extensions of nil-re*exive rings, such as trivialextensions, polynomial extensions and Nagata extensions.en_US
dc.description.abstractIn this paper, we deal with a new approach to re*exive propertyfor rings by using nilpotent elements, in this direction we introduce nil-re*exiverings. It is shown that the notion of nil-re*exivity is a generalization of thatof nil-semicommutativity. Examples are given to show that nil-re*exive ringsneed not be re*exive and vice versa, and nil-re*exive rings but not semicommutative are presented. We also proved that every ring with identity is weaklyre*exive de...ned by Zhao, Zhu and Gu. Moreover, we investigate basic properties of nil-re*exive rings and provide some source of examples for this classof rings. We consider some extensions of nil-re*exive rings, such as trivialextensions, polynomial extensions and Nagata extensions.en_US
dc.language.isoengen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectİstatistik ve Olasılıken_US
dc.subjectMatematiken_US
dc.titleNil-Reflexive Ringsen_US
dc.typearticleen_US
dc.relation.journalCommunications Series A1: Mathematics and Statisticsen_US
dc.contributor.departmentKırşehir Ahi Evran Üniversitesien_US
dc.identifier.volume65en_US
dc.identifier.issue1en_US
dc.identifier.startpage19en_US
dc.identifier.endpage33en_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US]


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster