Manganese(III) complexes with a tetradentate thiosemicarbazone. Structural characterization, electrochemistry, antioxidant capability, molecular docking and dynamics simulation on the potential inhibitory activity of cyclin-dependent kinase 2
Citation
Ortaboy, S., Karakurt, T., Kaya, B., Şahin, O., & Ülküseven, B. (2024). Manganese (III) complexes with a tetradentate thiosemicarbazone. Structural characterization, electrochemistry, antioxidant capability, molecular docking and dynamics simulation on the potential inhibitory activity of cyclin-dependent kinase 2. Polyhedron, 117128.Abstract
Two manganese(III) complexes with the general formula [MnIII(L)X] (where L is a tetradentate thiosemicarbazone; X = Cl (Mn1) or N3 (Mn2 is new) were synthesized and verified the expected structures by experimental and theoretical methods. Electrochemical behavior of the manganese complexes were studied using cyclic voltammetry (CV) and square wave voltammetry (SWV). TEAC and DPPH values were determined and compared with those of ascorbic acid (AA). Further, the correlation between the antioxidant data and redox potentials was discussed. Molecular dynamics (MD) simulations were performed after calculating the binding affinities to cyclin-dependent kinase 2 for Mn1, Mn2, and AA to clarify some information about their thermodynamic and dynamic properties and to validate the molecular docking results. The calculations gave the binding affinities that are −6.0, −8.6 and −9.4 kcal/mol for AA, Mn1 and Mn2, respectively. The experimental and theoretical results revealed that complex Mn2 having azide ion has a better antioxidant performance and also the highest docking score with the protein. The study demonstrated that such manganese complexes are suitable candidates to drug development against diseases caused by oxidative stress. © 2024 Elsevier Ltd