dc.contributor.author | Karakus, Siddika Ozkaldi | |
dc.contributor.author | Aksoyak, Ferdag Kahraman | |
dc.date.accessioned | 2019-11-24T20:35:35Z | |
dc.date.available | 2019-11-24T20:35:35Z | |
dc.date.issued | 2015 | |
dc.identifier.issn | 0188-7009 | |
dc.identifier.issn | 1661-4909 | |
dc.identifier.uri | https://dx.doi.org/10.1007/s00006-015-0545-x | |
dc.identifier.uri | https://hdl.handle.net/20.500.12513/1908 | |
dc.description | WOS: 000363232700014 | en_US |
dc.description.abstract | In this paper, we define the generalized bicomplex numbers and give some algebraic properties of them. Also, we show that some hyperquadrics in and are Lie groups by using generalized bicomplex number product and obtain Lie algebras of these Lie groups. Moreover, by using tensor product surfaces, we determine some special Lie subgroups of these hyperquadrics. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | SPRINGER BASEL AG | en_US |
dc.relation.isversionof | 10.1007/s00006-015-0545-x | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Lie group | en_US |
dc.subject | Bicomplex number | en_US |
dc.subject | Surfaces in Euclidean space | en_US |
dc.subject | Surfaces in pseudo-Euclidean space | en_US |
dc.title | Generalized Bicomplex Numbers and Lie Groups | en_US |
dc.type | article | en_US |
dc.relation.journal | ADVANCES IN APPLIED CLIFFORD ALGEBRAS | en_US |
dc.contributor.department | Kırşehir Ahi Evran Üniversitesi, Eğitim Fakültesi, Matematik ve Fen Bilimleri Eğitimi Bölümü | en_US |
dc.identifier.volume | 25 | en_US |
dc.identifier.issue | 4 | en_US |
dc.identifier.startpage | 943 | en_US |
dc.identifier.endpage | 963 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |