Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorRichter, Stefan
dc.contributor.authorYilmaz, Faruk
dc.date.accessioned2019-11-24T20:39:12Z
dc.date.available2019-11-24T20:39:12Z
dc.date.issued2019
dc.identifier.issn0022-1236
dc.identifier.issn1096-0783
dc.identifier.urihttps://dx.doi.org/10.1016/j.jfa.2018.10.006
dc.identifier.urihttps://hdl.handle.net/20.500.12513/2642
dc.descriptionWOS: 000481567300003en_US
dc.description.abstractLet D denote the classical Dirichlet space of analytic functions on the open unit disc whose derivative is square area integrable. For a set E subset of partial derivative D we write D-E = {f is an element of D : lim(r -> 1) f(re(it)) = 0 q.e.}, where q. e. stands for "except possibly for e(it) in a set of logarithmic capacity 0 ''. We show that if E is a Carleson set, then there is a function f is an element of D-E that is also in the disc algebra and that generates DE in the sense that D-E = clos {pf : p is a polynomial}. We also show that if phi is an element of D is an extrernal function (i.e. < p phi, phi > = p(0) for every polynomial p), then the limits of vertical bar phi(z)vertical bar exist for every e(it) is an element of partial derivative D as z approaches e(it) from within any polynornially tangential approach region. (C) 2018 Elsevier Inc. All rights reserved.en_US
dc.language.isoengen_US
dc.publisherACADEMIC PRESS INC ELSEVIER SCIENCEen_US
dc.relation.isversionof10.1016/j.jfa.2018.10.006en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDirichlet spaceen_US
dc.subjectCarleson seten_US
dc.subjectLogarithmic capacityen_US
dc.subjectExtremal functionen_US
dc.titleRegularity for generators of invariant subspaces of the Dirichlet shiften_US
dc.typearticleen_US
dc.relation.journalJOURNAL OF FUNCTIONAL ANALYSISen_US
dc.contributor.departmentKırşehir Ahi Evran Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Bölümüen_US
dc.identifier.volume277en_US
dc.identifier.issue7en_US
dc.identifier.startpage2117en_US
dc.identifier.endpage2132en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster