dc.contributor.author | Kose, Handan | |
dc.contributor.author | Ungor, Burcu | |
dc.date.accessioned | 2019-11-24T20:57:39Z | |
dc.date.available | 2019-11-24T20:57:39Z | |
dc.date.issued | 2015 | |
dc.identifier.issn | 0010-2628 | |
dc.identifier.issn | 1213-7243 | |
dc.identifier.uri | https://dx.doi.org/10.14712/1213-7243.2015.140 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12513/2766 | |
dc.description | WOS: 000433853400001 | en_US |
dc.description.abstract | In this paper, we introduce a new kind of rings that behave like semicommutative rings, but satisfy yet more known results. This kind of rings is called P-semicommutative. We prove that a ring R is P-semicommutative if and only if R[x] is P-semicommutative if and only if R[x, x(-1)] is P-semicommutative. Also, if R[[x]] is P-semicommutative, then R is P-semicommutative. The converse holds provided that P(R) is nilpotent and R is power serieswise Armendariz. For each positive integer n, R is P-semicommutative if and only if T-n (R) is P-semicommutative. For a ring R of bounded index 2 and a central nilpotent element s, R is P-semicommutative if and only if K-s (R) is P-semicommutative. If T is the ring of a Morita context (A, B, M, N,Psi, phi with zero pairings, then T is P-semicommutative if and only if A and B are P-semicommutative. Many classes of such rings are constructed as well. We also show that the notions of clean rings and exchange rings coincide for P-semicommutative rings. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | CHARLES UNIV | en_US |
dc.relation.isversionof | 10.14712/1213-7243.2015.140 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | semicommutative ring | en_US |
dc.subject | P-semicommutative ring | en_US |
dc.subject | prime radical of a ring | en_US |
dc.title | Semicommutativity of the rings relative to prime radical | en_US |
dc.type | article | en_US |
dc.relation.journal | COMMENTATIONES MATHEMATICAE UNIVERSITATIS CAROLINAE | en_US |
dc.contributor.department | Kırşehir Ahi Evran Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Bölümü | en_US |
dc.identifier.volume | 56 | en_US |
dc.identifier.issue | 4 | en_US |
dc.identifier.startpage | 401 | en_US |
dc.identifier.endpage | 415 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |