Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorChen, Huanyin
dc.contributor.authorKose, Handan
dc.contributor.authorKurtulmaz, Yosum
dc.date.accessioned2019-11-24T20:57:40Z
dc.date.available2019-11-24T20:57:40Z
dc.date.issued2014
dc.identifier.issn1015-8634
dc.identifier.urihttps://dx.doi.org/10.4134/BKMS.2014.51.2.555
dc.identifier.urihttps://hdl.handle.net/20.500.12513/2775
dc.descriptionWOS: 000334569900021en_US
dc.description.abstractAn ideal I of a ring R is strongly pi-regular if for any x is an element of I there exist n is an element of N and y is an element of I such that x(n) x(n+l)y. We prove that every strongly pi-regular ideal of a ring is a B-ideal. An ideal I is periodic provided that for any x is an element of I there exist two distinct m, n is an element of N such that x(m) = x(n). Furthermore, we prove that an ideal I of a ring R is periodic if and only if I is strongly pi-regular and for any u is an element of U(I), u(-1) is an element of Z[u].en_US
dc.description.sponsorshipNatural Science Foundation of Zhejiang ProvinceNatural Science Foundation of Zhejiang Province [LY13A010019]en_US
dc.description.sponsorshipThe research of the author was supported by the Natural Science Foundation of Zhejiang Province (LY13A010019).en_US
dc.language.isoengen_US
dc.publisherKOREAN MATHEMATICAL SOCen_US
dc.relation.isversionof10.4134/BKMS.2014.51.2.555en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectstrongly pi-regular idealen_US
dc.subjectB-idealen_US
dc.subjectperiodic idealen_US
dc.titleEXTENSIONS OF STRONGLY pi-REGULAR RINGSen_US
dc.typearticleen_US
dc.relation.journalBULLETIN OF THE KOREAN MATHEMATICAL SOCIETYen_US
dc.contributor.departmentKırşehir Ahi Evran Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Bölümüen_US
dc.identifier.volume51en_US
dc.identifier.issue2en_US
dc.identifier.startpage555en_US
dc.identifier.endpage565en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster