Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorHarmanci, A.
dc.contributor.authorKose, H.
dc.contributor.authorKurtulmaz, Y.
dc.date.accessioned2019-11-24T20:57:41Z
dc.date.available2019-11-24T20:57:41Z
dc.date.issued2013
dc.identifier.issn1303-5010
dc.identifier.urihttps://hdl.handle.net/20.500.12513/2786
dc.descriptionWOS: 000329081500011en_US
dc.description.abstractLet R be an arbitrary ring with identity and M be a right R-module with S = End(M-R). Let f is an element of S. f is called pi-morphic if M/f(n)(M) congruent to r(M)(f(n)) for some positive integer n. A module M is called pi-morphic if every f is an element of S is pi-morphic. It is proved that M is pi-morphic and image-projective if and only if S is right pi-morphic and M generates its kernel. S is unit-it-regular if and only if M is pi-morphic and pi-Rickart if and only if M is pi-morphic and dual pi-Rickart. M is pi-morphic and image-injective if and only if S is left pi-morphic and M cogenerates its cokernel.en_US
dc.language.isoengen_US
dc.publisherHACETTEPE UNIV, FAC SCIen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEndomorphism ringsen_US
dc.subjectpi-morphic ringsen_US
dc.subjectpi-morphic modulesen_US
dc.subjectunit pi-regular ringsen_US
dc.titleON pi-MORPHIC MODULESen_US
dc.typearticleen_US
dc.relation.journalHACETTEPE JOURNAL OF MATHEMATICS AND STATISTICSen_US
dc.contributor.departmentKırşehir Ahi Evran Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Bölümüen_US
dc.identifier.volume42en_US
dc.identifier.issue4en_US
dc.identifier.startpage411en_US
dc.identifier.endpage418en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster