dc.contributor.author | Harmanci, A. | |
dc.contributor.author | Kose, H. | |
dc.contributor.author | Kurtulmaz, Y. | |
dc.date.accessioned | 2019-11-24T20:57:41Z | |
dc.date.available | 2019-11-24T20:57:41Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 1303-5010 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12513/2786 | |
dc.description | WOS: 000329081500011 | en_US |
dc.description.abstract | Let R be an arbitrary ring with identity and M be a right R-module with S = End(M-R). Let f is an element of S. f is called pi-morphic if M/f(n)(M) congruent to r(M)(f(n)) for some positive integer n. A module M is called pi-morphic if every f is an element of S is pi-morphic. It is proved that M is pi-morphic and image-projective if and only if S is right pi-morphic and M generates its kernel. S is unit-it-regular if and only if M is pi-morphic and pi-Rickart if and only if M is pi-morphic and dual pi-Rickart. M is pi-morphic and image-injective if and only if S is left pi-morphic and M cogenerates its cokernel. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | HACETTEPE UNIV, FAC SCI | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Endomorphism rings | en_US |
dc.subject | pi-morphic rings | en_US |
dc.subject | pi-morphic modules | en_US |
dc.subject | unit pi-regular rings | en_US |
dc.title | ON pi-MORPHIC MODULES | en_US |
dc.type | article | en_US |
dc.relation.journal | HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS | en_US |
dc.contributor.department | Kırşehir Ahi Evran Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Bölümü | en_US |
dc.identifier.volume | 42 | en_US |
dc.identifier.issue | 4 | en_US |
dc.identifier.startpage | 411 | en_US |
dc.identifier.endpage | 418 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |