dc.contributor.author | Guliyev, Vagif S. | |
dc.contributor.author | Hasanov, Javanshir J. | |
dc.contributor.author | Samko, Stefan G. | |
dc.date.accessioned | 2019-11-24T20:57:41Z | |
dc.date.available | 2019-11-24T20:57:41Z | |
dc.date.issued | 2013 | |
dc.identifier.issn | 0022-247X | |
dc.identifier.issn | 1096-0813 | |
dc.identifier.uri | https://dx.doi.org/10.1016/j.jmaa.2012.03.041 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12513/2789 | |
dc.description | WOS: 000314739000008 | en_US |
dc.description.abstract | We consider local "complementary" generalized Morrey spaces M-c({x0})p(.).omega (Omega) in which the p-means of function are controlled over Omega \ B(x(0), r) instead of B(x(0), r), where Omega subset of R-n is a bounded open set, p(x) is a variable exponent, and no monotonicity type condition is imposed onto the function omega(r) defining the "complementary" Morrey-type norm. In the case where omega is a power function, we reveal the relation of these spaces to weighted Lebesgue spaces. In the general case we prove the boundedness of the Hardy-Littlewood maximal operator and Calderon-Zygmund singular operators with standard kernel, in such spaces. We also prove a Sobolev type M-c({x0})p(.).omega (Omega) -> M-c({x0})p(.).omega (Omega)-theorem for the potential operators I-alpha(.), also of variable order. In all the cases the conditions for the boundedness are given it terms of Zygmund-type integral inequalities-on omega(r), which do not assume any assumption on monotonicity of omega(r). | en_US |
dc.description.sponsorship | Science Development Foundation under the President of the Republic of AzerbaijanScience Development Foundation (SDF) - Azerbaijan [EIF-2010-1(1)-40/06-1]; Scientific and Technological Research Council of Turkey (TUBITAK)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [110T695] | en_US |
dc.description.sponsorship | The research of V. Guliyev and J. Hasanov was partially supported by the grant of Science Development Foundation under the President of the Republic of Azerbaijan project EIF-2010-1(1)-40/06-1. The research of V. Guliyev and S. Samko was partially supported by the Scientific and Technological Research Council of Turkey (TUBITAK Project No: 110T695). | en_US |
dc.language.iso | eng | en_US |
dc.publisher | ACADEMIC PRESS INC ELSEVIER SCIENCE | en_US |
dc.relation.isversionof | 10.1016/j.jmaa.2012.03.041 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Generalized Morrey space | en_US |
dc.subject | Local "complementary" Morrey spaces | en_US |
dc.subject | Maximal operator | en_US |
dc.subject | Fractional maximal operator | en_US |
dc.subject | Riesz potential, singular integral operators, weighted spaces | en_US |
dc.title | Maximal, potential and singular operators in the local "complementary" variable exponent Morrey type spaces | en_US |
dc.type | article | en_US |
dc.relation.journal | JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS | en_US |
dc.contributor.department | Kırşehir Ahi Evran Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Bölümü | en_US |
dc.identifier.volume | 401 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 72 | en_US |
dc.identifier.endpage | 84 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |