dc.contributor.author | Kose, Handan | |
dc.contributor.author | Ungor, Burcu | |
dc.contributor.author | Halicioglu, Sait | |
dc.date.accessioned | 2019-11-24T20:57:42Z | |
dc.date.available | 2019-11-24T20:57:42Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 1303-5010 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12513/2796 | |
dc.description | WOS: 000315844800008 | en_US |
dc.description.abstract | Let R be a ring with identity. We introduce a class of rings which is a generalization of reduced rings. A ring R is called central rigid if for any a, b is an element of R, a(2)b = 0 implies ab belongs to the center of R. Since every reduced ring is central rigid, we study sufficient conditions for central rigid rings to be reduced. We prove that some results of reduced rings can be extended to central rigid rings for this general setting, in particular, it is shown that every reduced ring is central rigid, every central rigid ring is central reversible, central semicommutative, 2-primal, abelian and so directly finite. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | HACETTEPE UNIV, FAC SCI | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Reduced rings | en_US |
dc.subject | Central rigid rings | en_US |
dc.subject | Central reversible rings | en_US |
dc.subject | Central semi-commutative rings | en_US |
dc.subject | Abelian rings | en_US |
dc.title | A GENERALIZATION OF REDUCED RINGS | en_US |
dc.type | article | en_US |
dc.relation.journal | HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS | en_US |
dc.contributor.department | Kırşehir Ahi Evran Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Bölümü | en_US |
dc.identifier.volume | 41 | en_US |
dc.identifier.issue | 5 | en_US |
dc.identifier.startpage | 689 | en_US |
dc.identifier.endpage | 696 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |