dc.contributor.author | Guliyev, Vagif S. | |
dc.contributor.author | Mammadov, Yagub Y. | |
dc.date.accessioned | 2019-11-24T20:57:43Z | |
dc.date.available | 2019-11-24T20:57:43Z | |
dc.date.issued | 2012 | |
dc.identifier.issn | 1224-1784 | |
dc.identifier.issn | 1844-0835 | |
dc.identifier.uri | https://dx.doi.org/10.2478/v10309-012-0013-8 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12513/2802 | |
dc.description | WOS: 000304468700013 | en_US |
dc.description.abstract | In this paper we study the fractional maximal operator M-alpha, 0 <= alpha < Q and the Riesz potential operator F-alpha L 0 < alpha < Q on the Heisenberg group in the modified Morrey spaces L-p,L-lambda(H-n), where Q = 2n + 2 is the homogeneous dimension on H-n. We prove that the operators M-alpha and F-alpha are bounded from the modified Morrey space <(L)over tilde>(1,lambda)(H-n) to the weak modified Morrey space W (L) over tilde (q,lambda) (H-n) if and only if, alpha/Q <= 1 - 1/q <= alpha/(Q - lambda) and from (L) over tilde (p,lambda)(H-n) to (L) over tilde (q,lambda)(H-n) if and only if, alpha/Q <= 1/p - 1/q <= alpha/(Q - lambda). In the limiting case Q-lambda/alpha <= p <= Q/alpha we prove that the operator M-alpha is bounded from (L) over tilde (p,lambda)(H-n) to L-infinity (H-n) and the modified fractional integral operator (I) over tilde (alpha) is bounded from (L) over tilde (p,lambda)(H-n) to BMO(H-n). As applications of the properties of the fundamental solution of sub-Laplacian L on H-n, we prove two Sobolev-Stein embedding theorems on modified Morrey and Besov-modified Morrey spaces in the Heisenberg group setting. As an another application, we prove the boundedness of F alpha, from the Besov-modified Morrey spaces B (L) over tilde (s)(p theta),(lambda)(H-n) to B (L) over tilde (s)(q theta),lambda(H-n). | en_US |
dc.language.iso | eng | en_US |
dc.publisher | OVIDIUS UNIV PRESS | en_US |
dc.relation.isversionof | 10.2478/v10309-012-0013-8 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Heisenberg group | en_US |
dc.subject | Riesz potential | en_US |
dc.subject | fractional maximal function | en_US |
dc.subject | fractional integral | en_US |
dc.subject | modified Morrey space | en_US |
dc.subject | BMO space | en_US |
dc.title | Riesz potential on the Heisenberg group and modified Morrey spaces | en_US |
dc.type | article | en_US |
dc.relation.journal | ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA | en_US |
dc.contributor.department | Kırşehir Ahi Evran Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Bölümü | en_US |
dc.identifier.volume | 20 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 189 | en_US |
dc.identifier.endpage | 212 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |