Advanced Search

Show simple item record

dc.contributor.authorKula, Kamile Sanli
dc.contributor.authorApaydin, Aysen
dc.date.accessioned2019-11-24T20:57:44Z
dc.date.available2019-11-24T20:57:44Z
dc.date.issued2009
dc.identifier.issn0960-0779
dc.identifier.issn1873-2887
dc.identifier.urihttps://dx.doi.org/10.1016/j.chaos.2009.03.140
dc.identifier.urihttps://hdl.handle.net/20.500.12513/2815
dc.descriptionWOS: 000269190000021en_US
dc.description.abstractThe classical least squares (LS) method is widely used in regression analysis because computing its estimate is easy and traditional. However, LS estimators are very sensitive to outliers and to other deviations from basic assumptions of normal theory [Huynh H. A comparison of four approaches to robust regression, Psychol Bull 1982;92:505-12; Stephenson D. 2000. Available from: http://folk.uib.no/ngbnk/kurs/notes/node38.html; Xu R, Li C. Multidimensional least-squares fitting with a fuzzy model. Fuzzy Sets and Systems 2001;119:215-23.]. If there exists outliers in the data set, robust methods are preferred to estimate parameters values. We proposed a fuzzy robust regression method by using fuzzy numbers when x is crisp and Y is a triangular fuzzy number and in case of outliers in the data set, a weight matrix was defined by the membership function of the residuals. In the fuzzy robust regression, fuzzy sets and fuzzy regression analysis was used in ranking of residuals and in estimation of regression parameters, respectively [Sanli K, Apaydin A. Fuzzy robust regression analysis based on the ranking of fuzzy sets. Inernat. J. Uncertainty Fuzziness and Knowledge-Based Syst 2008;16:663-81.]. In this study, standard deviation estimations are obtained for the parameters by the defined weight matrix. Moreover, we propose another point of view in hypotheses testing for parameters. (C) 2009 Elsevier Ltd. All rights reserved.en_US
dc.language.isoengen_US
dc.publisherPERGAMON-ELSEVIER SCIENCE LTDen_US
dc.relation.isversionof10.1016/j.chaos.2009.03.140en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleHypotheses testing for fuzzy robust regression parametersen_US
dc.typearticleen_US
dc.relation.journalCHAOS SOLITONS & FRACTALSen_US
dc.contributor.departmentKırşehir Ahi Evran Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Bölümüen_US
dc.identifier.volume42en_US
dc.identifier.issue4en_US
dc.identifier.startpage2129en_US
dc.identifier.endpage2134en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record