Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorCamci, Cetin
dc.contributor.authorIlarslan, Kazim
dc.contributor.authorKula, Levent
dc.contributor.authorHacisalihoglu, H. Hilmi
dc.date.accessioned2019-11-24T20:57:44Z
dc.date.available2019-11-24T20:57:44Z
dc.date.issued2009
dc.identifier.issn0960-0779
dc.identifier.urihttps://dx.doi.org/10.1016/j.chaos.2007.11.001
dc.identifier.urihttps://hdl.handle.net/20.500.12513/2817
dc.descriptionWOS: 000267182400055en_US
dc.description.abstractIn n-dimensional Euclidean space E-n, harmonic curvatures of a non-degenerate curve defined by Ozdamar and Haci-salihoglu [Ozdamar E, Hacisalihoglu HH. A characterization of Inclined curves in Euclidean n-space. Comm Fac Sci Univ Ankara, Ser A 1 1975;24:15-23]. In this paper, we give some characterizations for a non-degenerate curve alpha to be a generalized helix by using its harmonic curvatures. Also we define the generalized Darboux vector D of a non-degenerate curve alpha in n-dimensional Euclidean space E-n and we show that the generalized Darboux vector D lies in the kernel of Frenet matrix M(s) if and only if the curve a is a generalized helix in the sense of Hayden. (C) 2007 Elsevier Ltd. All rights reserved.en_US
dc.language.isoengen_US
dc.publisherPERGAMON-ELSEVIER SCIENCE LTDen_US
dc.relation.isversionof10.1016/j.chaos.2007.11.001en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleHarmonic curvatures and generalized helices in E-nen_US
dc.typearticleen_US
dc.relation.journalCHAOS SOLITONS & FRACTALSen_US
dc.contributor.departmentKırşehir Ahi Evran Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Bölümüen_US
dc.identifier.volume40en_US
dc.identifier.issue5en_US
dc.identifier.startpage2590en_US
dc.identifier.endpage2596en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster