dc.contributor.author | Camci, Cetin | |
dc.contributor.author | Ilarslan, Kazim | |
dc.contributor.author | Kula, Levent | |
dc.contributor.author | Hacisalihoglu, H. Hilmi | |
dc.date.accessioned | 2019-11-24T20:57:44Z | |
dc.date.available | 2019-11-24T20:57:44Z | |
dc.date.issued | 2009 | |
dc.identifier.issn | 0960-0779 | |
dc.identifier.uri | https://dx.doi.org/10.1016/j.chaos.2007.11.001 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12513/2817 | |
dc.description | WOS: 000267182400055 | en_US |
dc.description.abstract | In n-dimensional Euclidean space E-n, harmonic curvatures of a non-degenerate curve defined by Ozdamar and Haci-salihoglu [Ozdamar E, Hacisalihoglu HH. A characterization of Inclined curves in Euclidean n-space. Comm Fac Sci Univ Ankara, Ser A 1 1975;24:15-23]. In this paper, we give some characterizations for a non-degenerate curve alpha to be a generalized helix by using its harmonic curvatures. Also we define the generalized Darboux vector D of a non-degenerate curve alpha in n-dimensional Euclidean space E-n and we show that the generalized Darboux vector D lies in the kernel of Frenet matrix M(s) if and only if the curve a is a generalized helix in the sense of Hayden. (C) 2007 Elsevier Ltd. All rights reserved. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | PERGAMON-ELSEVIER SCIENCE LTD | en_US |
dc.relation.isversionof | 10.1016/j.chaos.2007.11.001 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.title | Harmonic curvatures and generalized helices in E-n | en_US |
dc.type | article | en_US |
dc.relation.journal | CHAOS SOLITONS & FRACTALS | en_US |
dc.contributor.department | Kırşehir Ahi Evran Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Bölümü | en_US |
dc.identifier.volume | 40 | en_US |
dc.identifier.issue | 5 | en_US |
dc.identifier.startpage | 2590 | en_US |
dc.identifier.endpage | 2596 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |