Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorChen H.
dc.contributor.authorKose H.
dc.contributor.authorKurtulmaz Y.
dc.date.accessioned2019-11-24T20:57:45Z
dc.date.available2019-11-24T20:57:45Z
dc.date.issued2019
dc.identifier.issn1582-3067
dc.identifier.urihttps://hdl.handle.net/20.500.12513/2828
dc.description.abstractA ring R is almost unit-clean provided that every element in R is equivalent to the sum of an idempotent and a regular element. We prove that every ring in which every zero-divisor is strongly ?-regular is almost unit-clean and every matrix ring of elementary divisor domains is almost unit-clean. Furthermore, it is shown that the trivial extension R(M) of a commutative ring R and an R-module M is almost unit-clean if and only if each x ? R can be written in the form ux = r + e where u ? U(R), r ? R - (Z(R) ? Z(M)) and e ? Id(R). We thereby construct many examples of such rings. © 2019 Editura Academiei Romane. All rights reserved.en_US
dc.description.sponsorshipNatural Science Foundation of Zhejiang Province --Acknowledgements. H. Chen was supported by the Natural Science Foundation of Zhejiang Province, China (No. LY17A010018). --en_US
dc.language.isoengen_US
dc.publisherEditura Academiei Romaneen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAlmost unit-clean ringen_US
dc.subjectElementary divisor ringen_US
dc.subjectStrongly ?-regular ringen_US
dc.titleAlmost unit-clean ringsen_US
dc.typearticleen_US
dc.relation.journalMathematical Reportsen_US
dc.contributor.departmentKırşehir Ahi Evran Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Bölümüen_US
dc.identifier.volume21en_US
dc.identifier.issue1en_US
dc.identifier.startpage113en_US
dc.identifier.endpage121en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster