dc.contributor.author | Chen H. | |
dc.contributor.author | Kose H. | |
dc.contributor.author | Kurtulmaz Y. | |
dc.date.accessioned | 2019-11-24T20:57:45Z | |
dc.date.available | 2019-11-24T20:57:45Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 1582-3067 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12513/2828 | |
dc.description.abstract | A ring R is almost unit-clean provided that every element in R is equivalent to the sum of an idempotent and a regular element. We prove that every ring in which every zero-divisor is strongly ?-regular is almost unit-clean and every matrix ring of elementary divisor domains is almost unit-clean. Furthermore, it is shown that the trivial extension R(M) of a commutative ring R and an R-module M is almost unit-clean if and only if each x ? R can be written in the form ux = r + e where u ? U(R), r ? R - (Z(R) ? Z(M)) and e ? Id(R). We thereby construct many examples of such rings. © 2019 Editura Academiei Romane. All rights reserved. | en_US |
dc.description.sponsorship | Natural Science Foundation of Zhejiang Province --Acknowledgements. H. Chen was supported by the Natural Science Foundation of Zhejiang Province, China (No. LY17A010018). -- | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Editura Academiei Romane | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Almost unit-clean ring | en_US |
dc.subject | Elementary divisor ring | en_US |
dc.subject | Strongly ?-regular ring | en_US |
dc.title | Almost unit-clean rings | en_US |
dc.type | article | en_US |
dc.relation.journal | Mathematical Reports | en_US |
dc.contributor.department | Kırşehir Ahi Evran Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Bölümü | en_US |
dc.identifier.volume | 21 | en_US |
dc.identifier.issue | 1 | en_US |
dc.identifier.startpage | 113 | en_US |
dc.identifier.endpage | 121 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |