Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorChen H.
dc.contributor.authorKose H.
dc.contributor.authorKurtulmaz Y.
dc.date.accessioned2019-11-24T20:57:48Z
dc.date.available2019-11-24T20:57:48Z
dc.date.issued2015
dc.identifier.issn1018-6301
dc.identifier.urihttps://hdl.handle.net/20.500.12513/2850
dc.description.abstractA ring R is strongly clean provided that every element in R is the sum of an idempotent and a unit that commutate. Let Tn(R; ?) be the skew triangular matrix ring over a local ring R where ? is an endomorphism of R. We show that T2(R; ?) is strongly clean if and only if for any a? 1+J(R); b ? J(R), la -r?(b): R› R is surjective. Further, T3(R; ?) is strongly clean if la-r?(b); la-r?2(b) and lb-r?(a)are surjective for any a ? U(R); b ? J(R). The necessary condition for T3(R; ?) to be strongly clean is also obtained. © 2015 Iranian Mathematical Society.en_US
dc.language.isoengen_US
dc.publisherIranian Mathematical Societyen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectLocal ringsen_US
dc.subjectSkew triangular matrix ringsen_US
dc.subjectStrongly clean ringsen_US
dc.titleStrongly clean triangular matrix rings with endomorphismsen_US
dc.typearticleen_US
dc.relation.journalBulletin of the Iranian Mathematical Societyen_US
dc.contributor.departmentKırşehir Ahi Evran Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Bölümüen_US
dc.identifier.volume41en_US
dc.identifier.issue6en_US
dc.identifier.startpage1365en_US
dc.identifier.endpage1374en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster