dc.contributor.author | Chen H. | |
dc.contributor.author | Kose H. | |
dc.contributor.author | Kurtulmaz Y. | |
dc.date.accessioned | 2019-11-24T20:57:48Z | |
dc.date.available | 2019-11-24T20:57:48Z | |
dc.date.issued | 2015 | |
dc.identifier.issn | 1018-6301 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12513/2850 | |
dc.description.abstract | A ring R is strongly clean provided that every element in R is the sum of an idempotent and a unit that commutate. Let Tn(R; ?) be the skew triangular matrix ring over a local ring R where ? is an endomorphism of R. We show that T2(R; ?) is strongly clean if and only if for any a? 1+J(R); b ? J(R), la -r?(b): R› R is surjective. Further, T3(R; ?) is strongly clean if la-r?(b); la-r?2(b) and lb-r?(a)are surjective for any a ? U(R); b ? J(R). The necessary condition for T3(R; ?) to be strongly clean is also obtained. © 2015 Iranian Mathematical Society. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Iranian Mathematical Society | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Local rings | en_US |
dc.subject | Skew triangular matrix rings | en_US |
dc.subject | Strongly clean rings | en_US |
dc.title | Strongly clean triangular matrix rings with endomorphisms | en_US |
dc.type | article | en_US |
dc.relation.journal | Bulletin of the Iranian Mathematical Society | en_US |
dc.contributor.department | Kırşehir Ahi Evran Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Bölümü | en_US |
dc.identifier.volume | 41 | en_US |
dc.identifier.issue | 6 | en_US |
dc.identifier.startpage | 1365 | en_US |
dc.identifier.endpage | 1374 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |