Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorGuliyev V.S.
dc.contributor.authorIbrahimov E.J.
dc.date.accessioned2019-11-24T20:57:48Z
dc.date.available2019-11-24T20:57:48Z
dc.date.issued2015
dc.identifier.issn2306-2193
dc.identifier.urihttps://hdl.handle.net/20.500.12513/2851
dc.description.abstractIn this paper we consider some problems of the theory of approximation of functions on interval [0, ?) in the metric of L2,? with weight sh2?x. The modulus of continuity used in those problems is constructed with the help of generalized Gegenbauer shift operator. The direct Jakson type theorems are proved. The function spaces of Nikolski-Besov type associated with Gegenbauer differential operator D? are introduced and their descriptions in terms of best approximations are obtained. © 2015, Institute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijan. All rights reserved.en_US
dc.description.sponsorshipEIF-2014-9(15)-46/10/1 Indian National Science Academy --The research of V. Guliyev was partially supported by the grant of Science Development Foundation under the President of the Republic of Azerbaijan, Grant EIF-2014-9(15)-46/10/1 and by the grant of Presidium of Azerbaijan National Academy of Science 2015. The research of E. Ibrahimov was partially supported by the grant of Presidium of Azerbaijan National Academy of Science 2015. --en_US
dc.language.isoengen_US
dc.publisherInstitute of Mathematics and Mechanics, National Academy of Sciences of Azerbaijanen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectApproximation of functionsen_US
dc.subjectGegenbauer transformationsen_US
dc.subjectGeneralized gegenbauer shiften_US
dc.subjectThe boundedness of spectrum functionsen_US
dc.titleGeneralized gegenbauer shift and some problems of the theory of approximation of functions on the metric of L2,?en_US
dc.typearticleen_US
dc.relation.journalTransactions Issue Mathematics, Azerbaijan National Academy of Sciencesen_US
dc.contributor.departmentKırşehir Ahi Evran Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Bölümüen_US
dc.identifier.volume35en_US
dc.identifier.issue4en_US
dc.identifier.startpage19en_US
dc.identifier.endpage51en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster