dc.contributor.author | Guliyev V.S. | |
dc.contributor.author | Hasanov J.J. | |
dc.contributor.author | Samko S.G. | |
dc.date.accessioned | 2019-11-24T20:57:51Z | |
dc.date.available | 2019-11-24T20:57:51Z | |
dc.date.issued | 2010 | |
dc.identifier.issn | 0025-5521 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12513/2876 | |
dc.description.abstract | We consider generalized Morrey spaces M p(·),?(?) with variable exponent p(x) and a general function ?(x,r) defining the Morrey-type norm. In case of bounded sets ? ? Rn we prove the boundedness of the Hardy-Littlewood maximal operator and Calderon-Zygmund singular operators with standard kernel, in such spaces. We also prove a Sobolev-Adams type M p(·),?(?) › Mq(·),? (?)-theorem for the potential operators I?(·), also of variable order. The conditions for the boundedness are given it terms of Zygmund-type integral inequalities on ?(x, r), which do not assume any assumption on monotonicity of ?(x, r) in r. | en_US |
dc.language.iso | eng | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.title | Boundedness of the maximal, potential and singular operators in the generalized variable exponent Morrey spaces | en_US |
dc.type | article | en_US |
dc.relation.journal | Mathematica Scandinavica | en_US |
dc.contributor.department | Kırşehir Ahi Evran Üniversitesi, Fen-Edebiyat Fakültesi, Matematik Bölümü | en_US |
dc.identifier.volume | 107 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 285 | en_US |
dc.identifier.endpage | 304 | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |