Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorKucukonder, Hande
dc.contributor.authorBoyaci, Sedat
dc.contributor.authorAkyuz, Adil
dc.date.accessioned2019-11-26T20:14:50Z
dc.date.available2019-11-26T20:14:50Z
dc.date.issued2016
dc.identifier.issn1300-011X
dc.identifier.issn1303-6173
dc.identifier.urihttps://dx.doi.org/10.3906/tar-1408-28
dc.identifier.urihttps://hdl.handle.net/20.500.12513/4048
dc.descriptionWOS: 000369715200009en_US
dc.description.abstractThe leaf area measurement is an important parameter in understanding the growth and physiology of a plant. Therefore, this study aimed to develop the best leaf area estimation model for tomato plants grown in plastic greenhouse conditions. The artificial neural network (ANN) and regression analysis techniques were used in the formation of a leaf area estimation model by using the leaf width and leaf length measurements determined by the linear measurement method. The plant material for the study consisted of 420 leaf samples of the Typhoon F1 tomato type grown in plastic greenhouse conditions. In the comparison of the created models according to both methods, the criteria of selecting low values for the root mean square error (RMSE), the mean absolute error (MAE), and the mean absolute percentage error (MAPE), and high value for the determination coefficient (R-2) were taken into account, and the best estimation models were determined. In the comparison made according to these criteria, it was concluded that the error values of the ANN model [R-2 = 0.96, RMSE = 3.30, MAE = 1.94, and MAPE = 0.05] were lower than those of the regression model [R-2 = 0.92, RMSE = 4.71, MAE = 3.31, and MAPE = 0.08], and that the ANN method provided a better fit to the actual values; therefore, the ANN model can be used as an alternative method in estimating the leaf area.en_US
dc.language.isoengen_US
dc.publisherTUBITAK SCIENTIFIC & TECHNICAL RESEARCH COUNCIL TURKEYen_US
dc.relation.isversionof10.3906/tar-1408-28en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial neural networken_US
dc.subjectleaf lengthen_US
dc.subjectleaf widthen_US
dc.subjectleaf areaen_US
dc.subjectregressionen_US
dc.subjecttomatoesen_US
dc.titleA modeling study with an artificial neural network: developing estimation models for the tomato plant leaf areaen_US
dc.typearticleen_US
dc.relation.journalTURKISH JOURNAL OF AGRICULTURE AND FORESTRYen_US
dc.contributor.departmentKırşehir Ahi Evran Üniversitesi, Ziraat Fakültesi, Biyosistem Mühendisliği Bölümüen_US
dc.identifier.volume40en_US
dc.identifier.issue2en_US
dc.identifier.startpage203en_US
dc.identifier.endpage212en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster