Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorSucuoğlu, Halûk
dc.contributor.authorKaatsız, Kaan
dc.date.accessioned2022-12-22T06:18:29Z
dc.date.available2022-12-22T06:18:29Z
dc.date.issued2021en_US
dc.identifier.citationSucuoğlu, H., & Kaatsız, K. (2021). Torsional ductility spectrum for predicting ductility distribution in simple asymmetric‐plan structures. Earthquake Engineering & Structural Dynamics, 50(2), 538-559.en_US
dc.identifier.issn00988847
dc.identifier.urihttps://doi.org/10.1002/eqe.3345
dc.identifier.urihttps://hdl.handle.net/20.500.12513/4853
dc.description.abstractAn analytical procedure is developed for predicting the ductility demands in simple asymmetric-plan structures under earthquake ground motions. The procedure governs regular structures dominated by the lower vibration modes where inelastic response occurs only at the bases of first story columns and at the beam ends, in conformance with the capacity design principles. Torsional ductility spectra are generated for expressing the maximum ductility response of torsionally coupled, generic, single-story, 2-degree-of-freedom inelastic parametric systems. Five parameters characterize the parametric systems: first mode period, uncoupled frequency ratio, stiffness eccentricity, stiff-to-flexible edge strength ratio, and ductility reduction factor. A surrogate modeling approach is developed for converting the properties of the actual systems to those of the parametric system. Mean maximum ductilities of torsionally stiff, equally stiff, and torsionally flexible systems are calculated under a set of design spectrum compatible strong motions for the possible combinations of characteristic parameters. The results obtained from case studies revealed reasonable accuracy of the estimations. The results have indicated that the flexible side frames of torsionally stiff and equally stiff code conforming designs are mainly responsible for providing the intended ductility and energy dissipation capacity whereas the stiff side frames play a secondary role, particularly when the stiff edge is significantly stronger than the flexible edge. However, ductility demands in torsionally flexible systems are significantly larger at both sides compared with torsionally stiff systems. © 2020 John Wiley & Sons, Ltd.en_US
dc.language.isoengen_US
dc.publisherJohn Wiley and Sons Ltden_US
dc.relation.isversionof10.1002/eqe.3345en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectasymmetric-plan structuresen_US
dc.subjectductility distributionen_US
dc.subjectperformance assessmenten_US
dc.subjecttorsional couplingen_US
dc.subjecttorsional ductility spectraen_US
dc.subjectuniform ductility spectraen_US
dc.titleTorsional ductility spectrum for predicting ductility distribution in simple asymmetric-plan structuresen_US
dc.typearticleen_US
dc.relation.journalEarthquake Engineering and Structural Dynamicsen_US
dc.contributor.departmentMühendislik-Mimarlık Fakültesien_US
dc.contributor.authorIDKaan Kaatsız / 0000-0001-9842-3607en_US
dc.identifier.volume50en_US
dc.identifier.issue2en_US
dc.identifier.startpage538en_US
dc.identifier.endpage559en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster