Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorSepet, Sezin Aykurt
dc.date.accessioned2025-02-25T07:14:05Z
dc.date.available2025-02-25T07:14:05Z
dc.date.issued2020en_US
dc.identifier.citationSepet, S. A., & Ergüt, M. (2020). Pointwise bi-slant submersions from cosymplectic manifolds. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(2), 1310-1319.en_US
dc.identifier.issn1303-5991
dc.identifier.urihttps://10.31801/cfsuasmas.650697
dc.identifier.urihttps://hdl.handle.net/20.500.12513/7124
dc.description.abstractWe introduce pointwise bi-slant submersions from cosymplectic manifolds onto Riemannian manifolds as a generalization of anti-invariant, semi-invariant, semi-slant, hemi-slant, pointwise semi-slant, pointwise hemi-slant and pointwise slant Riemannian submersions. We give an example for pointwise bi-slant submersions and investigate integrability and totally geodesicness of the distributions which are mentioned in the definition of pointwise bi-slant submersions admitting vertical Reeb vector field. Also we obtain necessary and sufficient conditions for such submersions to be totally geodesic maps.en_US
dc.language.isoengen_US
dc.publisherAnkara Unıven_US
dc.relation.isversionof10.31801/cfsuasmas.650697en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectRiemannian Submersionen_US
dc.subjectPointwise Bi-slant Submersionen_US
dc.subjectCosymplectic Manifolden_US
dc.titlePointwise Bi-Slant Submersions From Cosymplectic Manifoldsen_US
dc.typearticleen_US
dc.relation.journalCommunıcatıons Faculty of Scıences Unıversıty of Ankara-Serıes A1 Mathematıcs and Statıstıcsen_US
dc.contributor.departmentFen Edebiyat Fakültesien_US
dc.contributor.authorIDSezin Aykurt Sepet / 0000-0003-1521-6798en_US
dc.identifier.volume69en_US
dc.identifier.issue2en_US
dc.identifier.startpage1310en_US
dc.identifier.endpage1319en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster