Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorErbay Dalkılıç, Türkan
dc.contributor.authorŞanlı Kula, Kamile
dc.contributor.authorSağırkaya Tolan, Seda
dc.date.accessioned2025-02-25T10:21:51Z
dc.date.available2025-02-25T10:21:51Z
dc.date.issued2020en_US
dc.identifier.citationDalkılıç, T. E., Kula, K. Ş., & Tolan, S. S. (2020). Parameter estimation by type-2 fuzzy logic in case that data set has outlier. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 69(2), 1193-1204.en_US
dc.identifier.issn1303-5991
dc.identifier.urihttps://10.31801/cfsuasmas.713755
dc.identifier.urihttps://hdl.handle.net/20.500.12513/7125
dc.description.abstractOne of the problems encountered in estimating the unknown parameters of the regression models is the presence of outliers in the data set. This situation may cause problems in providing some assumptions such as the normal distribution for the parameter estimation process and the homogeneity of the variances. The case of the presence of outlier observations in the data set, estimation methods based on fuzzy logic that can be minimized the level of impact of this data are emerged as available methods. If fuzzy logic is used in regression analysis, there are two main steps for parameter estimation. The first of these is to define the clusters that compose the data set, and the other is calculate the degree of membership to determining the contributions of the data to each model for the clusters. In this study, type-2 fuzzy clustering algorithm defined as an expansion of fuzzy c-means algorithm in the determination of membership degrees of data sets was benefited. The presence of outliers in the data set is addressed. An algorithm has been proposed to estimate the unknown belonging to parameters of the regression model using the membership degrees obtained relating to the cluster elements. The parameters were estimated using regression methods to examine the effectiveness of the algorithm that called robust methods, and the results obtained were compared.en_US
dc.language.isoengen_US
dc.publisherAnkara Unıven_US
dc.relation.isversionof10.31801/cfsuasmas.713755en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectType-2 Fuzzy Clusteringen_US
dc.subjectParameter Estimateen_US
dc.subjectOutliersen_US
dc.subjectRobust Methodsen_US
dc.titleParameter Estimation By Type-2 Fuzzy Logic In Case That Data Set Has Outlieren_US
dc.typearticleen_US
dc.relation.journalCommunıcatıons Faculty of Scıences Unıversıty of Ankara-Serıes A1 Mathematıcs and Statıstıcsen_US
dc.contributor.departmentFen Edebiyat Fakültesien_US
dc.contributor.authorIDKamile Şanlı Kula / 0000-0001-8624-5233en_US
dc.identifier.volume69en_US
dc.identifier.issue2en_US
dc.identifier.startpage1193en_US
dc.identifier.endpage1204en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster