Boundedness Of The Maxımal, Potentıal And Sıngular Operators In The Generalızed Varıable Exponent Morrey Spaces

Yükleniyor...
Küçük Resim

Tarih

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

MATEMATISK INST

Erişim Hakkı

info:eu-repo/semantics/closedAccess

Özet

We consider generalized Morrey spaces M(P(.),omega)(Omega) with variable exponent p(x) and a general function omega(x, r) defining the Money-type norm. In case of bounded sets Omega subset of R(n) we prove the boundedness of the Hardy-Littlewood maximal operator and Calderon-Zygmund singular operators with standard kernel, in such spaces. We also prove a Sob lev-Adams type M(p(.),omega)(Omega)-> M(q(.),omega)(Omega)-theorem for the potential operators I(alpha(.)), also of variable order. The conditions for the boundedness are given it terms of Zygmund-type integral inequalities on omega(x, r), which do not assume any assumption on monotonicity of omega(x, r) in r

Açıklama

WOS: 000285798700008

Anahtar Kelimeler

Kaynak

MATHEMATICA SCANDINAVICA

WoS Q Değeri

Scopus Q Değeri

Cilt

107

Sayı

2

Künye

Onay

İnceleme

Ekleyen

Referans Veren