Thermal Conversion Behavior of Paper Mill Sludge: Characterization, Kinetic, and Thermodynamic Analyses
Dosyalar
Tarih
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Erişim Hakkı
Özet
The present paper reports the pyrolysis behavior, kinetic, and thermodynamic parameters of paper mill sludge (PMS), which is a paper manufacturing residue and cannot be re-evaluated, at three heating rates (5, 10, and 20 °C min−1) under non-isothermal conditions. Ultimate and proximate analyses of the paper mill sludge were carried out. Kinetic and thermodynamic parameters were calculated using four model-free methods; Flynn-Wall Ozawa (FWO), Friedman, Kissinger-Akahira-Sunose (KAS), and distributed activation energy model (DAEM). High R2 values revealed that all models are compatible with TGA data. The activation energy calculated (101.01 kJ mol−1) from FWO was higher than the other three methods. Pre-exponential factor values ranged from 0.56 × 103 and 14.55 × 103 s−1 for all methods. Kinetic and thermodynamic findings will be beneficial in terms of the process design of PMS pyrolysis. Graphical abstract: [Figure not available: see fulltext.]. © 2021, The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature.