LOCAL COMPARABILITY OF EXCHANGE IDEALS
Yükleniyor...
Dosyalar
Tarih
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
IEJA-INT ELECTRONIC JOURNAL ALGEBRA
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
An exchange ideal I of a ring R is locally comparable if for every regular x is an element of I there exists a right or left invertible u is an element of 1 + I such that x = xux. We prove that every matrix extension of an exchange locally comparable ideal is locally comparable. We thereby prove that every square regular matrix over such ideal admits a diagonal reduction.
Açıklama
WOS: 000455124100001
Anahtar Kelimeler
Locally comparable ideal, matrix extension, diagonal reduction, exchange ideal
Kaynak
INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA
WoS Q Değeri
Scopus Q Değeri
Cilt
25