Strongly Clean Matrices Over Power Series

Yükleniyor...
Küçük Resim

Tarih

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

KYUNGPOOK NATL UNIV, DEPT MATHEMATICS

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

An n x n matrix A over a commutative ring is strongly clean provided that it can be written as the sum of an idempotent matrix and an invertible matrix that commute. Let R be an arbitrary commutative ring, and let A(x) is an element of M-n (R[[x]]). We prove, in this note, that A(x) is an element of M-n (R[[x]]) is strongly clean if and only if A(0) is an element of M-n (R) is strongly clean. Strongly clean matrices over quotient rings of power series are also determined.

Açıklama

WOS: 000406980000008

Anahtar Kelimeler

strongly clean matrix, characteristic polynomial, power series

Kaynak

KYUNGPOOK MATHEMATICAL JOURNAL

WoS Q Değeri

Scopus Q Değeri

Cilt

56

Sayı

2

Künye

Onay

İnceleme

Ekleyen

Referans Veren