Strongly Clean Matrices Over Power Series
Yükleniyor...
Dosyalar
Tarih
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
KYUNGPOOK NATL UNIV, DEPT MATHEMATICS
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
An n x n matrix A over a commutative ring is strongly clean provided that it can be written as the sum of an idempotent matrix and an invertible matrix that commute. Let R be an arbitrary commutative ring, and let A(x) is an element of M-n (R[[x]]). We prove, in this note, that A(x) is an element of M-n (R[[x]]) is strongly clean if and only if A(0) is an element of M-n (R) is strongly clean. Strongly clean matrices over quotient rings of power series are also determined.
Açıklama
WOS: 000406980000008
Anahtar Kelimeler
strongly clean matrix, characteristic polynomial, power series
Kaynak
KYUNGPOOK MATHEMATICAL JOURNAL
WoS Q Değeri
Scopus Q Değeri
Cilt
56
Sayı
2