A Novel Study of Morlet Neural Networks to Solve the Nonlinear HIV İnfection System of Latently İnfected Cells

Yükleniyor...
Küçük Resim

Tarih

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Elsevier B.V.

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

The aim of this study is to provide the numerical outcomes of a nonlinear HIV infection system of latently infected CD4+ T cells exists in bioinformatics using Morlet wavelet (MW) artificial neural networks (ANNs) optimized initially with global search of genetic algorithms (GAs) hybridized for speedy local search of sequential quadratic programming (SQP), i.e., MW-ANN-GA-SQP. The design of an error function is presented by designing the MW-ANN models for the differential equations along with the initial conditions that represent the HIV infection system involving latently infected CD4+ T cells. The precision and persistence of the presented approach MW-ANN-GA-SQP are recognized through comparative studies from the results of the Runge-Kutta numerical scheme for solving the HIV infection spread system in case of single and multiple trails of the MW-ANN-GA-SQP. Statistical estimates with ‘Theil's inequality coefficient’ and ‘root mean square error’ based indices further validate the sustainability and applicability of proposed MW-ANN-GA-SQP solver. © 2021 The Authors

Açıklama

Anahtar Kelimeler

Bioinformatics, Genetic Algorithms, HIV Infection Models, Morlet Wavelets, Neural Networks, Sequential Quadratic Programming

Kaynak

Results in Physics

WoS Q Değeri

Scopus Q Değeri

Cilt

25

Sayı

Künye

Umar, M., Sabir, Z., Raja, M. A. Z., Baskonus, H. M., Yao, S. W., & Ilhan, E. (2021). A novel study of Morlet neural networks to solve the nonlinear HIV infection system of latently infected cells. Results in Physics, 25, 104235.

Onay

İnceleme

Ekleyen

Referans Veren