M-Lauricella Hypergeometric Functions: Integral Representations and Solution of Fractional Differential Equations

Yükleniyor...
Küçük Resim

Tarih

Yazarlar

Dergi Başlığı

Dergi ISSN

Cilt Başlığı

Yayıncı

Ankara Unıv

Erişim Hakkı

info:eu-repo/semantics/openAccess

Özet

In this paper, using the modified beta function involving the gen-eralized M-series in its kernel, we describe new extensions for the Lauricella hypergeometric functions F(r) A, FB(r), FC(r) and F(r) D . Furthermore, we find various integral representations for the newly defined extended Lauricella hy-pergeometric functions. Then, we obtain solution of fractional differential equations involving new extensions of Lauricella hypergeometric functions, as examples.

Açıklama

Anahtar Kelimeler

Fractional Derivatives and İntegrals, Beta Function, Confluent Hypergeometric Func-tion, Lauricella Functions, Fractional Differential Equations, Laplace Transform

Kaynak

Communıcatıons Faculty of Scıences Unıversıty of Ankara-Serıes A1 Mathematıcs and Statıstıcs

WoS Q Değeri

Scopus Q Değeri

Cilt

72

Sayı

2

Künye

Ata, E. (2023). M-Lauricella hypergeometric functions: integral representations and solutions of fractional differential equations. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 72(2), 512-529.

Onay

İnceleme

Ekleyen

Referans Veren