M-Lauricella Hypergeometric Functions: Integral Representations and Solution of Fractional Differential Equations
Yükleniyor...
Dosyalar
Tarih
Yazarlar
Dergi Başlığı
Dergi ISSN
Cilt Başlığı
Yayıncı
Ankara Unıv
Erişim Hakkı
info:eu-repo/semantics/openAccess
Özet
In this paper, using the modified beta function involving the gen-eralized M-series in its kernel, we describe new extensions for the Lauricella hypergeometric functions F(r) A, FB(r), FC(r) and F(r) D . Furthermore, we find various integral representations for the newly defined extended Lauricella hy-pergeometric functions. Then, we obtain solution of fractional differential equations involving new extensions of Lauricella hypergeometric functions, as examples.
Açıklama
Anahtar Kelimeler
Fractional Derivatives and İntegrals, Beta Function, Confluent Hypergeometric Func-tion, Lauricella Functions, Fractional Differential Equations, Laplace Transform
Kaynak
Communıcatıons Faculty of Scıences Unıversıty of Ankara-Serıes A1 Mathematıcs and Statıstıcs
WoS Q Değeri
Scopus Q Değeri
Cilt
72
Sayı
2
Künye
Ata, E. (2023). M-Lauricella hypergeometric functions: integral representations and solutions of fractional differential equations. Communications Faculty of Sciences University of Ankara Series A1 Mathematics and Statistics, 72(2), 512-529.